Mobile wallpaper 1
430 words
2 minutes
C++ Native Thread Pool

Motivation#

A. Problems:#

std::thread([&]{ do_work(); }).detach();
  1. Expensive Overhead: Creating and destroying threads frequently is costly (milliseconds per thread).
  2. Thread Management: Hard to coordinate and control many short-lived threads and their tasks.
  3. Resource Exhaustion: Spawning too many threads can exhaust system resources (CPU, memory, handles).

Minimal Thread Pools from Scratch#

#include <condition_variable>
#include <functional>
#include <future>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
class MiniPool {
public:
explicit MiniPool(const size_t n) {
for (size_t i = 0; i < n; ++i) {
workers.emplace_back([this] {
for (;;) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [this] { return stopping || !tasks.empty(); });
if (stopping && tasks.empty()) return;
task = std::move(tasks.front());
tasks.pop();
}
task();
}
});
}
}
template <typename F>
auto enqueue(F f) -> std::future<std::invoke_result_t<F>> {
using R = std::invoke_result_t<F>;
auto t = std::make_shared<std::packaged_task<R()>>(std::move(f));
std::future<R> res = t->get_future();
{
std::lock_guard<std::mutex> lock(mtx);
tasks.emplace([t] { (*t)(); });
}
cv.notify_one();
return res;
}
~MiniPool() {
{
std::lock_guard<std::mutex> lock(mtx);
stopping = true;
}
cv.notify_all();
for (auto& w : workers) w.join();
}
private:
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex mtx;
std::condition_variable cv;
bool stopping = false;
};

A Modern C++ Thread Pool#

class ThreadPool {
public:
explicit ThreadPool(std::size_t thread_count = std::thread::hardware_concurrency()) : stop_(false), active_(0) {
if (thread_count == 0) {
thread_count = 1;
}
workers_.reserve(thread_count);
for (std::size_t i = 0; i < thread_count; ++i) {
workers_.emplace_back([this] { worker_loop(); });
}
}
ThreadPool(const ThreadPool&) = delete;
ThreadPool& operator=(const ThreadPool&) = delete;
ThreadPool(ThreadPool&&) = delete;
ThreadPool& operator=(ThreadPool&&) = delete;
~ThreadPool() {
{
std::lock_guard<std::mutex> lock(mutex_);
stop_ = true;
}
cv_.notify_all();
for (auto& t : workers_) {
if (t.joinable()) {
t.join();
}
}
}
template <class F, class... Args>
auto enqueue(F&& f, Args&&... args) -> std::future<std::invoke_result_t<F, Args...>> {
using R = std::invoke_result_t<F, Args...>;
auto task = std::make_shared<std::packaged_task<R()>>(make_task_functor(std::forward<F>(f), std::forward<Args>(args)...));
std::future<R> fut = task->get_future();
{
std::lock_guard<std::mutex> lock(mutex_);
if (stop_) {
throw std::runtime_error("enqueue on stopped ThreadPool");
}
tasks_.emplace_back([task] { (*task)(); });
}
cv_.notify_one();
return fut;
}
void wait_idle() {
std::unique_lock<std::mutex> lock(mutex_);
idle_cv_.wait(lock, [this] { return tasks_.empty() && active_ == 0; });
}
std::size_t size() const noexcept {
return workers_.size();
}
private:
using Task = std::function<void()>;
template <class F, class... Args>
static auto make_task_functor(F&& f, Args&&... args) {
using Fn = std::decay_t<F>;
using Tup = std::tuple<std::decay_t<Args>...>;
return [fn = Fn(std::forward<F>(f)), tup = Tup(std::forward<Args>(args)...)]() mutable { return std::apply(std::move(fn), std::move(tup)); };
}
void worker_loop() {
for (;;) {
Task task;
{
std::unique_lock<std::mutex> lock(mutex_);
cv_.wait(lock, [this] { return stop_ || !tasks_.empty(); });
if (stop_ && tasks_.empty()) {
return;
}
task = std::move(tasks_.front());
tasks_.pop_front();
++active_;
}
task();
{
std::lock_guard<std::mutex> lock(mutex_);
--active_;
if (tasks_.empty() && active_ == 0) {
idle_cv_.notify_all();
}
}
}
}
std::vector<std::thread> workers_;
std::deque<Task> tasks_;
mutable std::mutex mutex_;
std::condition_variable cv_;
std::condition_variable idle_cv_;
bool stop_;
std::size_t active_;
};

Reference#

progschj
/
ThreadPool
Waiting for api.github.com...
00K
0K
0K
Waiting...

Some information may be outdated